Skip to main content

TD1 - Bilan de liaison

1 - Introduction

Limiting link-UL
UL ratiopULp_{UL}0.2
Target cell edge data rate [Mbps]DD20.0
Carrier frequency [GHz]fcf_c28
Allocated bandwidth [MHz]WW100
BS antenna height [m]hbh_b33
UE antenna height [m]hmh_m1.50
Coverage probabilitypcp_c0.90
NLOS propagation-YES
Indoor coverage-NO
Shadowing standard deviation [dB]σ\sigma6
Number of HARQ retransmissionsNhN_h4

2 - Transmission

1. Compute the EIRP and the transmit diversity gain

On a Ptx=23dBmP_{tx} = 23 dBm et Na=2N_a = 2

EIRP=Ptx+GtxLEIRP = P_{tx} + G_{tx} - L\\

Transmit diversity gain :

Gtx=10log10(Ntx)G_{tx} = 10 \log_{10} (N_{tx})\\

On calcule :

EIRP=23+10log20EIRP=23+3.01EIRP=26.01dBm\begin{align*} & EIRP = 23 + 10 \log_{2} - 0\\ & EIRP = 23 + 3.01\\ & EIRP = 26.01 dBm\\ \end{align*}

3 - Reception

2. Compute the target SINR.

SNR=10log10(β(2CcibleαW1))SNR = 10 \log_{10}(\beta (2^{\frac{C_{cible}}{\alpha W}}- 1 ))

On utilise pULp_{UL} et DD de l'énoncé

Ccible=DpUL=200.2=100MbpsC_{cible} = \frac{D}{p_{UL}} = \frac{20}{0.2} = 100 Mbps

On connait α=1\alpha = 1 et β=1\beta = 1 et W=100MHzW = 100 MHz

SNR=10log10(1(210011001))SNR=10log10(21001001)SNR=10log10(211)SNR=10log10(21)SNR=10log10(1)SNR=100SNR=0\begin{align*} & SNR = 10 \log_{10}(1 (2^\frac{100}{1 \cdot 100}- 1 ))\\ & SNR = 10 \log_{10}(2^\frac{100}{100}- 1 )\\ & SNR = 10 \log_{10}(2^1- 1 )\\ & SNR = 10 \log_{10}(2- 1 )\\ & SNR = 10 \log_{10}(1)\\ & SNR = 10 \cdot 0\\ & SNR = 0\\ \end{align*}

D'après l'énoncé, on a Li=3dBL_i = 3 dB

SINRcible=SNR+LiSINRcible=0+3SINRcible=3dB\begin{align*} & SINR_{cible} = SNR + L_{i}\\ & SINR_{cible} = 0 + 3\\ & SINR_{cible} = 3 dB\\ \end{align*}

3. Compute the noise power at the receiver.

On a

  • N0=174dBm/HzN_0 = -174 dBm/Hz
  • W=100MHzW = 100 MHz
  • NF=3dBN_F = 3 dB

En WW

N=N0WNF\begin{align*} & N = N_0 \cdot W \cdot N_F\\ \end{align*}

En dBmdBm :

N=174+10log(W)+NFN=174+10log(100106)+3N=174+108+3N=174+80+3N=91dBm\begin{align*} & N = -174 + 10 \cdot \log(W) + N_F\\ & N = -174 + 10 \cdot \log(100 \cdot 10^6) + 3\\ & N = -174 + 10 \cdot 8 + 3\\ & N = -174 + 80 + 3\\ & N = -91 dBm\\ \end{align*}

4. Compute the receive array gain, the receive antenna gain and the diversity gain.

On a

  • NbAE=128Nb_{AE} = 128
  • NbAP=2Nb_{AP} = 2
  • Gae=8dBiG_{ae} = 8 dBi
Garray=10log10(NbAENbAP)Garray=10log10(1282)Garray=10log10(1282)Garray=101.80617997398Garray=18.06dB\begin{align*} & G_{array} = 10 \cdot \log_{10}(\frac{Nb_{AE}}{Nb_{AP}})\\ & G_{array} = 10 \cdot \log_{10}(\frac{128}{2})\\ & G_{array} = 10 \cdot \log_{10}(\frac{128}{2})\\ & G_{array} = 10 \cdot 1.80617997398\\ & G_{array} = 18.06 dB\\ \end{align*} Gdiversity=10log10(NbAP)Gdiversity=10log10(2)Gdiversity=100.301Gdiversity=3.01dB\begin{align*} & G_{diversity} = 10 \cdot \log_{10}(Nb_{AP})\\ & G_{diversity} = 10 \cdot \log_{10}(2)\\ & G_{diversity} = 10 \cdot 0.301\\ & G_{diversity} = 3.01 dB\\ \end{align*}

Le gain de l'antenne de réception correspond au gain d'un élément d'antenne Gae=8dBiG_{ae} = 8 dBi

5. After including typical scheduling gain and HARQ gain, compute the sensitivity of the receiver.

La valeur typique du gain d'ordonnancement est de Gs=3dBG_s = 3dB

Dans l'énoncé on a Nh=4N_h = 4

GHARQ=10log10(Nh)GHARQ=10log10(4)GHARQ=6dB\begin{align*} & G_{HARQ} = 10 \cdot \log_{10}(N_h)\\ & G_{HARQ} = 10 \cdot \log_{10}(4)\\ & G_{HARQ} = 6 dB\\ \end{align*} S=SINR+NGS=SINR+NGarrayGdiversityGaeGsGHARQS=3+(91)18.063.01836S=126.07dBm\begin{align*} & S = SINR + N - G\\ & S = SINR + N - G_{array} - G_{diversity} - G_{ae} - G_s - G_{HARQ}\\ & S = 3 +(-91) - 18.06 - 3.01 - 8 - 3 - 6\\ & S = -126.07 dBm\\ \end{align*}

4 - Margins

6. Compute the shadowing margin.

On connait

  • d'après l'énoncé σ=6dB\sigma = 6 dB
  • d'après l'énoncé pc=0.9p_c = 0.9
  • Pout=1pc=10.9=0.1P_{out} = 1 - p_c = 1 - 0.9 = 0.1

On utilise la formule de Jakes

Ks=σQ1(Pout)\begin{align*} & K_s = \sigma Q^{-1}(P_{out}) \end{align*}

On sait que Q1(0.1)=1.28Q^{-1}(0.1) = 1.28

Ks=6Q1(0.1)Ks=61.28Ks=7.68dB\begin{align*} & K_s = 6 Q^{-1}(0.1) & K_s = 6 \cdot 1.28 & K_s = 7.68 dB \end{align*}

On utilise les valeurs de la table 1 de l'article

table

On regarde les lignes Subarray type 2 x 1 dipole. On choisit de prendre le “Hard Hand Grip” car c'est le pire des cas

On a donc Khl=15dBK_{hl}=15dB

8. Compute the indoor penetration loss when indoor coverage is required up to 1m.

On regarde le modele 3GPP 38901-g10-channel-models.pdf et on utilise le O2I building penetration loss.

On a fc=28f_c = 28

PL=PLb+PLtw+PLin+N(0,σP2)PL = PL_b + PL_{tw} + PL_{in} + N(0, \sigma^2_P) PLin=0.5d=0.5dBPL_{in} = 0.5 \cdot d = 0.5 dB

On utilise le modèle de low-loose model pour PLtwPL_{tw} (d'après l'article):

PLtw=510log10(pglass10Lglass10+pconcrete10Lconcrete10)PLtw=510log10(0.310(2+0.2fc)10+0.710(5+4fc)10)PLtw=510log10(0.310(2+0.228)10+0.710(5+428)10)PLtw=510log10(0.3103.610+0.7105+42810)PLtw=510log10(0.3100.36+0.71011710)PLtw=510log10(0.3100.36+0.71011.7)PLtw=17.8dB\begin{align*} & PL_{tw} = 5 - 10\log_{10} (p_{glass} \cdot 10^{\frac{-L_{\mathrm{glass}}}{10}} + p_{concrete} \cdot 10^{\frac{-L_{\mathrm{concrete}}}{10}}) \\ & PL_{tw} = 5 - 10\log_{10} (0.3 \cdot 10^{\frac{-(2+0.2*f_c)}{10}} + 0.7 \cdot 10^{\frac{-(5+4*f_c)}{10}}) \\ & PL_{tw} = 5 - 10\log_{10} (0.3 \cdot 10^{\frac{-(2+0.2*28)}{10}} + 0.7 \cdot 10^{\frac{-(5+4*28)}{10}}) \\ & PL_{tw} = 5 - 10\log_{10} (0.3 \cdot 10^{\frac{3.6}{10}} + 0.7 \cdot 10^{\frac{5+4*28}{10}}) \\ & PL_{tw} = 5 - 10\log_{10} (0.3 \cdot 10^{0.36} + 0.7 \cdot 10^{\frac{117}{10}}) \\ & PL_{tw} = 5 - 10\log_{10} (0.3 \cdot 10^{0.36} + 0.7 \cdot 10^{11.7}) \\ & PL_{tw} = 17.8 dB \\ \end{align*}

On trouve donc PL=0.5+17.8=18.3dBPL = 0.5 + 17.8 = 18.3 dB

On a dvd_v = 2m$

figure

On trouve donc 4.5dB4.5 dB

On connait fc=28GHzf_c = 28 GHz

fig

On trouve donc Rainloss=1.4dBRain_{loss} = 1.4 dB

5 - Cell radius

11. Compute the MAPL and the cell range indoor and outdoor.

Modele 3GPP 38901-g10-channel-models.pdf.

On connait

  • PIRE=26.01dBmPIRE = 26.01 dBm
  • S=126.07dBmS = -126.07 dBm
  • Mi=0.5dBM_i = 0.5 dB
  • Ks=7.68dBK_s = 7.68 dB - shadowing margin
  • Garray=18.06dBG_{array} = 18.06 dB
  • Gdiversity=3.01dBG_{diversity} = 3.01 dB
  • Gae=8dBiG_{ae} = 8 dBi
  • Khl=15dBK_{hl} = 15dB - hand and body loss
  • Floss=4.5dBF_{loss} = 4.5 dB
  • Rainloss=1.4dBRain_{loss} = 1.4 dB
  • PL=18.3dBPL = 18.3 dB - indoor penetration loss

Cas "cell range indoor" :

MAPL=PIRESMargesPertes+GainMAPL=26.01(126.07)MiKsKhlPLFlossRainloss+MAPL=26.01(126.07)0.57.681518.34.51.4MAPL=104.7dB\begin{align*} & MAPL = PIRE - S - Marges - Pertes + Gain\\ & MAPL = 26.01 - (-126.07) - M_i - K_s - K_{hl} - PL - F_{loss} - Rain_{loss} + \\ & MAPL = 26.01 - (-126.07) - 0.5 - 7.68 - 15 -18.3 - 4.5 - 1.4\\ & MAPL = 104.7 dB\\ \end{align*}

Cas "cell range outdoor" :

MAPL=PIRESMargesGainsPertesMAPL=26.01(126.07)MiKsKhlFlossRainlossMAPL=26.01(126.07)0.57.68154.51.4MAPL=123dB\begin{align*} & MAPL = PIRE - S - Marges - Gains - Pertes\\ & MAPL = 26.01 - (-126.07) - M_i - K_s - K_{hl} - F_{loss} - Rain_{loss}\\ & MAPL = 26.01 - (-126.07) - 0.5 - 7.68 - 15 - 4.5 - 1.4\\ & MAPL = 123 dB\\ \end{align*}

On utilise la formule de NLOS propagation :

PLUMANLOS=13.54+39.08log10(d3D)+20log10(fc)0.6(hUT1.5)PL_{UMA-NLOS} = 13.54 + 39.08 \log_{10}(d_{3D}) + 20 \log_{10}(f_c) - 0.6(h_{UT} - 1.5)

On inverse la formule pour avoir donc :

d3D=10PLUMANLOS13.5420log10(28)+0.6(hUT1.5)39.08d_{3D} = 10^{\frac{PL_{UMA-NLOS} - 13.54 - 20 \log_{10}(28) + 0.6(h_{UT} - 1.5)}{39.08}}

On connait aussi :

  • hBS=33mh_{BS} = 33 m
  • hUT=1.5mh_{UT} = 1.5 m
  • fc=28GHzf_c = 28 GHz

d3d.png

Or nous voulons pour d2Dd_{2D}

d2D=(d3D)2(hBShUT)2d_{2D} = \sqrt{(d_{3D})^{2} - (h_{BS} - h_{UT})^{2}}

On trouve donc d3Din=39.09md_{3D-in} = 39.09m et d2Din=23.14md_{2D-in} = 23.14m

On trouve donc d3Dout=114.9md_{3D-out} = 114.9m et d2Dout=110.5md_{2D-out} = 110.5m

6 - Deployment scenario in Paris 13

12. Deployment scenario in Paris 13

On connait :

  • la formule de l'aire d'un cercle : S=πR2S = \pi \cdot R^2 donc la formule du rayon d'un cercle : Sπ\sqrt{\frac{S}{\pi}}
  • la surface de Paris 13 : 7.15km27.15 km^2
  • le nombre de sites LTE : 31

Surface moyenne d'une cellule :

Smoy=AireParis13NbLTESmoy=7.1531Smoy=0.230km2\begin{align*} & S_{moy} = \frac{Aire_{Paris13}}{Nb_{LTE}}\\ & S_{moy} = \frac{7.15}{31}\\ & S_{moy} = 0.230 km^2\\ \end{align*}

Le rayon moyen d'une cellule :

Rmoy=SmoyπRmoy=0.230πRmoy=0.073Rmoy=0.27kmRmoy=270m\begin{align*} & R_{moy} = \sqrt{\frac{S_{moy}}{\pi}}\\ & R_{moy} = \sqrt{\frac{0.230}{\pi}}\\ & R_{moy} = \sqrt{0.073}\\ & R_{moy} = 0.27 km\\ & R_{moy} = 270 m\\ \end{align*}

13. What is the proportion of Paris 13 area that could be covered with mmW if only LTE sites were reused?

Airemoy=NbLTEπd2Dout2Airemoy=31π(110.5103)2Airemoy=1.18km2\begin{align*} & Aire_{moy} = Nb_{LTE} \cdot \pi \cdot d_{2D-out}^{2}\\ & Aire_{moy} = 31 \cdot \pi \cdot (110.5*10^{-3})^{2}\\ & Aire_{moy} = 1.18 km^2\\ \end{align*} Proportion=AiremoyAireParis13Proportion=0.467.15Proportion=16%\begin{align*} & Proportion = \frac{Aire_{moy}}{Aire_{Paris13}}\\ & Proportion = \frac{0.46}{7.15}\\ & Proportion = 16\%\\ \end{align*}

14. How many mmW sites would be needed to cover the whole area?

Nbsite=AireParis13AirecellNbsite=AireParis13πd2Dout2Nbsite=7.15π(110.5103)2Nbsite=186\begin{align*} & Nb_{site} = \frac{Aire_{Paris13}}{Aire_{cell}}\\ & Nb_{site} = \frac{Aire_{Paris13}}{\pi \cdot d_{2D-out}^{2}}\\ & Nb_{site} = \frac{7.15}{\pi \cdot (110.5*10^{-3})^{2}}\\ & Nb_{site} = 186\\ \end{align*}

15. Same questions if the target cell edge data rate is set to 5 Mbps.

Ccible=50.2=25MbpsSNR=10log10(22511001)=7.23dBSINR=7.23+3=4.23dBS=133.3dBmMAPLout=130.23dBd3Dout=173.6md2Dout=170.7mNbsite=7.15/(π(170.7103)2)=78\begin{align*} & C_{cible} = \frac{5}{0.2} = 25 Mbps\\ & SNR = 10 \log_{10}(2^\frac{25}{1 \cdot 100}- 1 ) = -7.23 dB\\ & SINR = -7.23 + 3 = -4.23 dB\\ & S = -133.3 dBm\\ & MAPL_{out} = 130.23 dB\\ & d_{3D-out} = 173.6m\\ & d_{2D-out} = 170.7m\\ & Nb_{site} = 7.15 / (\pi \cdot (170.7*10^{-3})^{2}) = 78\\ \end{align*}

16. Same questions if the target cell edge data rate is set to 5 Mbps and indoor coverage is required.

Ccible=50.2=25MbpsSNR=10log10(22511001)=7.23dBSINR=7.23+3=4.23dBS=133.3dBmMAPLindoor=111.93dBd3Dout=59.85md2Dout=50.9mNbsite=7.15/(π(170.7103)2)=878\begin{align*} & C_{cible} = \frac{5}{0.2} = 25 Mbps\\ & SNR = 10 \log_{10}(2^\frac{25}{1 \cdot 100}- 1 ) = -7.23 dB\\ & SINR = -7.23 + 3 = -4.23 dB\\ & S = -133.3 dBm\\ & MAPL_{indoor} = 111.93 dB\\ & d_{3D-out} = 59.85m\\ & d_{2D-out} = 50.9m\\ & Nb_{site} = 7.15 / (\pi \cdot (170.7*10^{-3})^{2}) = 878\\ \end{align*}